Product Description
HYRL-1739 High Speed Rapier Loom
Type HYRL-1739 High Speed Rapier Loom,as a leading weaving machine, following market demands and development, is designed to weave high quality, high value-added fabric,with the features of advanced technology, reliable structure, easy maintenance, high-speed and high-grade.
This machine is adopted with modular design, high degree of mechanical and electrical integration.And it is equipped with advanced rotary electronic dobby and electronic color selection device.And it can achieve to weave all types of fabrics such as plain weave, twill, satin, jacquard etc by changing the program.of electronic control box.
Main specification:
Reed width | 190cm,210cm,230cm,280cm | ||
Machine Speed | 460RPM–600RPM | ||
Main Drive | Directly driven by variable speed motor (patent) | ||
Shedding Motion | Staubli 2658 electronic dobby, up to pages of heald frame | Electronic heald leveling time setting | Dobby pattern edited by the eclectric cabinet |
Let-off Motion | Driven by independent servo motor, warp tendion detected by sensor, double back rest structure | Disc diameter:φ805mm,φ1000mm | |
Take-up Motion | Driven by independent servo motor,double rollers pressurized device | Max cloth roller diameter φ600mm |
|
Color Selection | Independence motor driven, 4-6 colors, up to 8 colors | Color selection time and pattern edit set in the electric cabinet | |
Weft Accumulators | High speed drum weft feeder, coaxial tensioner to adjust tension, standard 4, up to 8 moveable assembly accumulator frame | ||
Selvage | Double sides, each driven by independent motor, selvage time is controlled by electric control cabinet | ||
Pick finding | Aumatic pick finding, full leveling or semi-leveling stop | ||
Lubrication | Forced circulation lubrication device driven by independent oil pump motor | With oil temperature, oil pressure,jam protection | |
Control | 10 inches true color touch screen HMI,six color indicator light | 32-bit master control system, fully enclosed cabinet | Both sides push button design |
Fabrics Made By this Machine
Exhibition/Show
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Type: | Rapier Loom |
---|---|
Voltage: | 380V |
Computerized: | Computerized |
Precision: | High Precision |
Certification: | CE, ISO9001: 2000 |
Warranty: | 1 Year |
Customization: |
Available
|
|
---|
What are the signs that indicate a need for tensioner roller replacement, and how can they be diagnosed?
Identifying the signs that indicate a need for tensioner roller replacement is crucial for maintaining the optimal performance and reliability of a belt drive system. Here’s a detailed explanation of the signs and diagnostic methods for determining when tensioner roller replacement is necessary:
1. Excessive Belt Slack:
If the tensioner roller has worn out or lost its tensioning capability, it may result in excessive belt slack. Excessive belt slack can be observed visually by noticing sagging or drooping of the belt between pulleys. To diagnose this, visually inspect the belt and check for any significant slack or looseness. Excessive belt slack indicates that the tensioner roller is no longer providing adequate tension and should be replaced.
2. Belt Misalignment:
A failing tensioner roller can lead to belt misalignment, causing the belt to deviate from its intended path. Belt misalignment can be diagnosed by observing the belt’s position in relation to the pulleys. Signs of misalignment include the belt running off-center, making contact with adjacent components, or riding too close to the edge of the pulleys. If belt misalignment is detected, it is essential to inspect the tensioner roller for any wear, damage, or misalignment and replace it if necessary.
3. Unusual Noise or Vibration:
A failing tensioner roller can generate unusual noise or vibrations in the belt drive system. This can be caused by worn bearings, misalignment, or other internal damages within the tensioner roller. To diagnose this, carefully listen for any abnormal noises such as grinding, squeaking, or rattling coming from the tensioner roller area while the system is in operation. Additionally, pay attention to any excessive vibrations or shaking of the belt drive system. If unusual noise or vibration is present, it indicates a potential issue with the tensioner roller that may require replacement.
4. Visible Wear or Damage:
Inspecting the tensioner roller for visible wear or damage is an essential diagnostic method. Look for signs of wear, such as cracks, grooves, or uneven surface texture on the roller. Additionally, check for any signs of physical damage, such as dents or deformation. If the tensioner roller shows visible signs of wear or damage, it is an indication that it has reached the end of its service life and should be replaced.
5. Inadequate Tension:
If the tensioner roller fails to provide sufficient tension to the belt, it can lead to belt slippage, reduced power transfer, and decreased overall system performance. Insufficient tension can be diagnosed by observing belt slippage or excessive wear on the belt’s contact surfaces with the pulleys. Check the tension of the belt by applying moderate pressure to it with your finger. If the belt deflects significantly, it indicates inadequate tension provided by the tensioner roller. In such cases, the tensioner roller should be inspected and replaced if necessary.
6. Maintenance Schedule:
Following the manufacturer’s recommended maintenance schedule is an important aspect of diagnosing the need for tensioner roller replacement. Manufacturers often provide guidelines on the expected service life or recommended replacement intervals for tensioner rollers. It is essential to consult the maintenance schedule specific to the belt drive system and adhere to the recommended replacement intervals. This proactive approach helps prevent potential failures or performance issues associated with worn or damaged tensioner rollers.
7. Professional Inspection:
In complex or critical applications, it may be necessary to seek the expertise of a professional technician or engineer to diagnose the need for tensioner roller replacement. Professionals can perform comprehensive inspections using specialized tools and techniques, such as laser alignment or vibration analysis, to assess the condition of the tensioner roller accurately. They can identify any underlying issues or potential risks and provide recommendations for replacement based on the specific requirements of the belt drive system.
In summary, the signs that indicate a need for tensioner roller replacement include excessive belt slack, belt misalignment, unusual noise or vibration, visible wear or damage, inadequate tension, adherence to maintenance schedules, and professional inspections. By regularly inspecting the tensioner roller and promptly addressing any signs of wear or malfunction, operators can ensure the reliable and efficient operation of their belt drive systems.
How do tensioner rollers contribute to reducing wear and increasing the lifespan of belts?
Tensioner rollers play a vital role in reducing wear and increasing the lifespan of belts in various applications. They offer several key contributions in achieving these objectives:
1. Maintaining Proper Belt Tension:
Tensioner rollers help maintain the optimal tension in belts throughout their operation. Proper tension is crucial for efficient power transmission and preventing belt slippage. When belts operate under inadequate tension, slippage can occur, leading to increased wear on the belt and associated components. Tensioner rollers ensure that the belts remain appropriately tensioned, reducing wear and extending their lifespan.
2. Absorbing Belt Vibrations:
Vibrations can occur in belt drive systems due to imbalances, misalignments, or variations in load. These vibrations can accelerate belt wear by causing friction and excessive flexing. Tensioner rollers are designed to absorb and dampen vibrations, minimizing their impact on the belt. By reducing vibrations, tensioner rollers help to decrease wear and prolong the life of the belt.
3. Distributing Tension Evenly:
Tensioner rollers distribute tension more evenly along the length of the belt. They help prevent localized areas of excessive tension, which can lead to premature wear and belt failure. By ensuring a more uniform distribution of tension, tensioner rollers contribute to reducing wear and extending the lifespan of belts.
4. Compensating for Belt Stretch:
Over time, belts can stretch due to the mechanical stresses they experience during operation. Belt stretch can result in reduced tension and compromised power transmission. Tensioner rollers are designed to compensate for belt stretch by applying additional tension to maintain the desired level of belt tension. This compensation helps to prevent belt slippage, wear, and premature failure, thereby increasing the lifespan of the belt.
5. Reducing Belt Misalignment:
Proper belt alignment is essential for minimizing wear and optimizing belt life. Tensioner rollers assist in maintaining belt alignment by exerting consistent pressure on the belt and guiding it along the desired path. By reducing belt misalignment, tensioner rollers help prevent edge wear, side-loading, and premature belt failure.
6. Providing Belt Support:
Tensioner rollers provide support to the belt, especially in longer spans or applications with heavy loads. They help prevent belt sagging and excessive flexing, which can lead to accelerated wear and reduced belt life. By offering support, tensioner rollers contribute to minimizing wear and increasing the durability of the belt.
7. Facilitating Belt Tracking:
Proper belt tracking is crucial for belt longevity and performance. Tensioner rollers aid in maintaining belt tracking by applying controlled pressure and guiding the belt along the intended path. By promoting accurate belt tracking, tensioner rollers help prevent edge wear, rubbing, and premature belt failure.
8. Minimizing Belt Slippage:
Belt slippage can occur when there is insufficient tension or excessive loads in the system. Tensioner rollers help maintain the necessary tension in the belt, ensuring a secure grip between the belt and the pulleys. By minimizing belt slippage, tensioner rollers reduce wear, heat generation, and premature belt failure.
In summary, tensioner rollers contribute significantly to reducing wear and increasing the lifespan of belts by maintaining proper tension, absorbing vibrations, distributing tension evenly, compensating for belt stretch, reducing belt misalignment, providing belt support, facilitating belt tracking, and minimizing belt slippage. These contributions help optimize the performance, efficiency, and longevity of belt drive systems in various applications.
How do tensioner rollers differ from other components in a vehicle’s belt drive system?
Tensioner rollers in a vehicle’s belt drive system have distinct characteristics that set them apart from other components. Here’s a detailed explanation of how tensioner rollers differ from other components in a vehicle’s belt drive system:
1. Function:
Tensioner rollers are specifically designed to maintain proper tension in belts within the vehicle’s belt drive system. Their primary function is to apply the necessary force to keep the belts properly tensioned, ensuring efficient power transmission and preventing slippage. Other components in the belt drive system, such as pulleys or idler pulleys, have different functions like redirecting the belt’s path or guiding it around various engine accessories.
2. Design:
Tensioner rollers, also known as belt tensioners or idler pulleys, typically consist of a pulley-like structure mounted on a spring-loaded arm or bracket. They have a smooth or grooved surface that comes into contact with the belt. The design allows the tensioner roller to rotate freely on bearings or bushings, accommodating the movement of the belt and maintaining the desired tension. In contrast, other components in the belt drive system, such as crankshaft pulleys or accessory pulleys, have different shapes and configurations depending on their specific tasks.
3. Tension Adjustment:
Tensioner rollers are designed to automatically adjust the tension in the belts. They can compensate for belt stretch or wear by adapting their position and maintaining the desired tension level. This self-adjusting feature ensures consistent belt tension throughout the vehicle’s operation. In contrast, other components in the belt drive system usually have a fixed position and do not actively contribute to tension adjustment.
4. Location:
Tensioner rollers are typically positioned at strategic locations within the belt drive system to optimize tensioning. They are often placed in locations where the belt’s tension tends to decrease due to the movement of different engine accessories. This placement allows the tensioner rollers to provide the necessary tension and prevent belt slippage. Other components, such as crankshaft pulleys or accessory pulleys, have specific positions based on their roles in driving the various engine accessories.
5. Maintenance and Replacement:
Tensioner rollers require regular maintenance and inspection to ensure their proper functioning. They may need lubrication, and their condition should be checked for signs of wear, damage, or misalignment. If a tensioner roller is found to be faulty or no longer providing adequate tension, it should be promptly replaced to prevent belt-related issues. Other components in the belt drive system may have their maintenance requirements and replacement intervals based on their specific design and usage.
6. Impact on Belt Performance:
Tensioner rollers have a direct impact on belt performance by maintaining the correct tension. They help prevent belt slippage, ensure optimal power transmission, and contribute to the overall efficiency and reliability of the belt drive system. Other components, although crucial for the system’s operation, may not have the same direct influence on belt tension and performance.
In summary, tensioner rollers differ from other components in a vehicle’s belt drive system in terms of their function, design, tension adjustment capabilities, location, maintenance requirements, and impact on belt performance. Understanding these differences is important for effectively maintaining and optimizing the performance of the belt drive system in a vehicle.
editor by Dream 2024-04-24
China OEM Heavy Duty Machine Excavator Undercarriage Spare Part Bottom Rollers Zx650/ Zx750/Zx870 Track Roller Berco
Product Description
Professional Excavator&Bulldozer CHINAMFG Undercarriage Parts Manufacturer
Factory Supplying Directly
Super Quality with Competitive Price!!!
Product Features:
Product Name: | Excavator Undercarriage Parts Track Roller/Bottom Roller for EX100 EX200 EX300 EX400 EX600 EX750 ZAX360 ZAX470 ZAX670 ZAX690 ZAX870 ZAX890 ZAX1200 Excavator Excavator |
Technical: | Forging/Casting |
Surface Hardness: | HRC52-58, Deepth:8mm-12mm |
Colors: | Black or Yellow |
Finishing: | Smooth |
Applicable Industries: | Machinery Repair Shops, Construction works |
Material: | 35MnB |
Related Products: | Track Link, Track Pad, Track Roller, Idler. Sprockets, Carrier Roller, Tensioner for Excavators And Dozers |
For more than thousands types of rollers in stock!
Shipment immediately once order confirmed.
Confirming Dimensions With Us Before Ordering
Make Sure the Parts Matching with Your Machine
Strict Quality Control System
Original Factory, Quality Guarantted.
Choose us. You can buy better parts with good price!
XIHU (WEST LAKE) DIS.N Excavator&Bulldozer Undercarriage Parts&Components Including:
- Track Chain With Track Shoe Assembly
- Segments for Heavy Duty Excavator and Bulldozer
- Drive Sprockets
- Track Roller
- Carriaer Roller
- Idler
- Tensioner Spring
- Bolts&Nuts for All Part
Related Models:
THE MODELS FOR EXCAVATOR/BULLDOZER | ||||||||
FOR HITACHI | ||||||||
EX40-1 | EX40-2 | EX55 | EX60 | EX60-2 | EX60-3 | EX60-5 | EX70 | EX75 |
EX100 | EX110 | EX120 | EX120-1 | EX120-2 | EX120-3 | EX120-5 | EX130-1 | EX200-1 |
EX200-2 | EX200-3 | EX200-5 | EX220-3 | EX220-5 | EX270 | EX300 | EX300-1 | EX300-2 |
EX300-3 | EX300-5 | EX300A | EX330 | EX370 | EX400-1 | EX400-2 | EX400-3 | EX400-5 |
EX450 | ZAX30 | ZAX55 | ZAX200 | ZAX200-2 | ZAX330 | ZAX450-1 | ZAX450-3 | ZAX450-5 |
ZX110 | ZX120 | ZX200 | ZX200-1 | ZX200-3 | ZX200-5G | ZX200LC-3 | ZX210 | ZX210-3 |
ZX210-5 | ZX225 | ZX240 | ZX250 | ZX270 | ZX300 | ZX330 | ZX330C | ZX350 |
ZX450 | ZX450LC | ZX500 | ZX500LC | ZX520 | ZX670 | ZX690 | ZX870 | ZX130 |
ZX170 | ZX170LC | ZX195 | ZX260 | ZX360 | ZX360LC | ZX400 | ZX470 | ZX490 |
FOR KOMATSU(EXCAVATOR) | ||||||||
PC20-7 | PC30 | PC30-3 | PC30-5 | PC30-6 | PC40-7 | PC45 | PC45-2 | PC55 |
PC120-6 | PC130 | PC130-7 | PC200 | PC200-1 | PC200-3 | PC200-5 | PC200-6 | PC200-7 |
PC200-8 | PC210-6 | PC220-1 | PC220-3 | PC220-6 | PC220-7 | PC220-8 | PC270-7 | PC202B |
PC220LC-6 | PC220LC-8 | PC240 | PC300 | PC300-3 | PC300-5 | PC300-6 | PC300-7 | PC300-7K |
PC300LC-7 | PC350-6/7 | PC400 | PC400-3 | PC400-5 | PC400-6 | PC400LC-7 | PC450-6 | PC450-7 |
PC600 | PC650 | PC750 | PC800 | PC1100 | PC1250 | PC2000 | PC360 | PC460 |
FOR KOMATSU(BULLDOZER) | ||||||||
D20 | D31 | D50 | D60 | D61 | D61PX | D65A | D65P | D64P-12 |
D80 | D85 | D155 | D275 | D355 | D85PX | D85EX | D65EX | D65PX |
D65E | D68 | D68ESS | D75 | D75S | D85ESS | D155 | D155A | D155AX |
D275 | D275AX | D355 | D475 | |||||
FOR CATERPILLAR(EXCAVATOR) | ||||||||
E200B | E200-5 | E320D | E215 | E320DL | E324D | E324DL | E329DL | E300L |
E320S | E320 | E320DL | E240 | E120-1 | E311 | E312B | E320BL | E345 |
E324 | E140 | E300B | E330C | E120 | E70 | E322C | E322B | E325 |
E325L | E330 | E450 | CAT225 | CAT312B | CAT315 | CAT320 | CAT320C | CAT320BL |
CAT330 | CAT322 | CAT245 | CAT325 | CAT320L | CAT973 | CAT939C | CAT963C | CAT313 |
CAT323 | CAT318 | CAT326 | CAT328 | CAT329 | CAT336 | CAT340 | CAT345 | CAT349 |
FOR CATERPILLAR(BULLDOZER) | ||||||||
D3 | D3B | D3C | D3D | D4 | D4C | D4D | D4E | D4H |
D5 | D5B | D5C | D5D | D5H | D5M | D6 | D6C | D6D |
D6H | D6M | D6R | D6G | D6N | D7 | D7C | D7D | D7E |
D7F | D7G | D7H | D7R | D8 | D8R | D8N | D8H | D8T |
D8L | D8K | D8G | D8M | D9 | D9L | D9N | D9R | D9T |
D10 | D10R | D10N | D10T | D11 | D11R | D11N | ||
FOR KOBELCO | ||||||||
SK120-6 | SK120-5 | SK210-8 | SK210LC-8 | SK220 | SK220-1 | SK220-3 | SK220-5/6 | SK200 |
SK200 | SK200 | SK200-3 | SK200-6 | SK200-8 | SK200-5/6 | SK60 | SK290 | SK100 |
SK230 | SK250 | SK250-8 | SK260LC-8 | SK300 | SK300-2 | SK300-4 | SK310 | SK320 |
SK330-8 | SK330 | SK350LC-8 | SK235SR | SK450 | SK480 | SK30-6 | ||
FOR SUMITOMO | ||||||||
SH120 | SH120-3 | SH200 | SH210-5 | SH200 | SH220-3 | SH220-5/7 | SH290-3 | SH350-5/7 |
SH220 | SH280 | SH290-7 | SH260 | SH300 | SH300-3 | SH300-5 | SH350 | SH60 |
FOR VOLVO | ||||||||
EC160C | EC160D | EC180B | EC180C | EC180D | EC210 | EC210 | EC210B | EC240B |
EC290 | EC290B | EC240 | EC55 | EC360 | EC360B | EC380D | EC460 | EC460B |
EC460C | EC700 | EC140 | EC140B | EC160B | EC350 | EC350DL | EC480 | EC340 |
FOR LIEBHERR | ||||||||
R914 | R924 | R934 | R944 | R916 | R926 | R936 | R954 | R966 |
R974 | R984 | |||||||
FOR KUBOTA | ||||||||
JH60-7 | JH115 | JH135 | JH161 | JH185 | ||||
FOR DAEWOO | ||||||||
DH200 | DH220-3 | DH220 | DH220S | DH280-2 | DH280-3 | DH55 | DH258 | DH130 |
DH370 | DH80 | DH500 | DH450 | DH225 | DH150 | DH330 | DH400 | DH580 |
FOR HYUNDAI | ||||||||
R60-5 | R60-7 | R80-7 | R200 | R200-3 | R210 | R210-1 | R210-9 | R210LC |
R210LC-7 | R225 | R225-3 | R225-7 | R250 | R250-7 | R290 | R290LC | R290LC-7 |
R320 | R360 | R954 | R205 | R210-5 | R215 | R230 | R235 | R275 |
R300 | R385 | R485 | ||||||
FOR KATO | ||||||||
HD512 | HD1430 | HD512III | HD820III | HD820R | HD1430III | HD700VI | HD1250VII | HD250SE |
HD400SE | HD500SE | HD1880 | ||||||
FOR DOOSAN | ||||||||
DX225 | DX225LC | DX258 | DX300 | DX300LCA | DX420 | DX430 | DX140 | DX150 |
DX220 | DX250 | DX255 | DX260 | DX370 | DX480 | DX520 | ||
FOR SHXIHU (WEST LAKE) DIS.I | ||||||||
SD13-2 | DH16J2XL | DH16J2LGP | SD16 | SD22 | SD32 | |||
FOR CASE | ||||||||
CX210 | CX210B | CX210C | CX210D | CX210LC | CX225 | CX235 | CX235C | CX240 |
CX240C | CX245 | CX250 | CX250C | CX300 | CX300C | CX330 | CX330C | CX350 |
CX350C | CX460 | CX460LC | CX470 | CX470C | CX490 | CX490D | CX700 | CX700B |
CX750 | CX750D | |||||||
FOR JCB | ||||||||
JS200 | JS200SC | JS210 | JS210SC | JS220 | JS220LC | JS230 | JS230LC | JS240 |
JS240LC | JS290 | JS290LC | JS300 | JS300LC | JS330 | JS330LC | ||
FOR XCMG | ||||||||
XE55DA | XE60DA | XE65DA | XE75DA | XE80C | XE80D | XE85C | XE85D | XE135D |
XE155DK | XE150D | XE155D | XE200DA | XE200D | XE200C | XE205DA | XE215DA | XE215C |
XE215D | XE215HB | XE225DK | XE230C | XE245DK | XE240D | XE260C | XE265C | XE270DK |
XE305D | XE335DK | XE335C | XE370D | XE370DK | XE370CA | XE370C | XE380DK | XE470D |
XE490DK | XE490CK | XE500HB | XE520DK | XE550DK | XE750D | XE750G | XE950D | XE950G |
XE950DA | XE55 | XE60 | XE65 | XE75 | XE80 | XE85 | XE135 | XE150 |
XE155 | XE200 | XE205 | XE215 | XE225 | XD230 | XE240 | XE245 | XE260 |
XE265 | XE270 | XE305 | XE335 | XE370 | XE380 | XE470 | XE490 | XE500 |
XE520 | XE550 | XE750 | XE950 | |||||
FOR MITSUBISHI | ||||||||
MS30 | MS110 | MS110-3 | MS110-5 | MS110-8 | MS180 | |||
FOR SAMSUNG | ||||||||
SE210 | SE280 | SE320 | ||||||
FOR IHI | ||||||||
IHI35 | IHI50 | IHI55 | IHI60 | IHI75 | ||||
FOR YMMA | ||||||||
YM15 | YM30 | YM35 | YM55 | YM65 | YM85 | |||
FOR LIUGONG | ||||||||
LG906C | LG907 | LG200 | LG220 | LG925 | LG934 |
Packing&Shipping
FAQ
1. You are a trader or a manufacture?
We are an industry and trade integration business.
2. How can I be sure the part will fit my excavator/bulldozer?
Give us correct model number/machine serial number/ any numbers on the parts itself. Or measure the parts give us dimension or drawing.
3. How about the payment terms?
We usually accept T/T(Wire Transfer). other terms also could be negotiated.
4. What is your minimum order?
It depends on what you are buying. Normally, 1 pcs also can be suppllied.
5. What is your delivery time?
FOB HangZhou or any Chinese port : 20 days . If there are any parts in stock , our delivery time is only 1-5 days.
6. What about Quality Control?
We have a perfect QC system for the perfect products. A team who will detect the product quality and specification piece carefully, monitoring every production process until packing is complete, to ensure product safety into container.
Contact Us:
Melon Lin —————- Sales Manager ZheJiang XIHU (WEST LAKE) DIS.N MACHINERY CO., LTD. |
After-sales Service: | Technical Support |
---|---|
Warranty: | 1 Year |
Type: | Undercarriage Parts Track Roller Bottom Roller |
Application: | Hitachi Excavator |
Certification: | CE, ISO9001: 2000 |
Condition: | New |
Samples: |
US$ 20/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can you provide insights into the importance of proper tensioner roller alignment?
Proper tensioner roller alignment is of utmost importance in a belt drive system as it directly affects the system’s functionality, performance, and longevity. Here are detailed insights into the importance of proper tensioner roller alignment:
1. Optimal Belt Tension:
Proper tensioner roller alignment ensures optimal belt tension, which is crucial for the efficient operation of the belt drive system. When the tensioner roller is correctly aligned, it applies the appropriate tension to the belt, keeping it properly tensioned and preventing excessive slack or tightness. Optimal belt tension ensures efficient power transfer, minimizes belt slippage, reduces wear on the belt and other components, and maximizes the overall performance of the system.
2. Prevents Belt Misalignment:
Tensioner roller alignment plays a vital role in preventing belt misalignment. Misalignment occurs when the belt deviates from its intended path, causing it to run off-center or make contact with adjacent components. Improper tensioner roller alignment can introduce lateral forces on the belt, leading to misalignment. Belt misalignment can result in reduced power transmission efficiency, increased wear on the belt and pulleys, and the generation of noise and vibrations. Proper tensioner roller alignment helps maintain the belt’s alignment, ensuring smooth operation and minimizing the risk of misalignment-related issues.
3. Reduces Belt Wear and Failure:
Proper tensioner roller alignment helps minimize belt wear and failure. Misalignment can cause the belt to rub against the pulleys or other components, resulting in accelerated wear and damage to the belt. Excessive wear can lead to belt stretching, cracking, or even premature failure. By ensuring proper tensioner roller alignment, the belt remains in its intended position, reducing friction, wear, and the risk of belt failure. This extends the lifespan of the belt and minimizes the need for frequent replacements, resulting in cost savings and improved system reliability.
4. Minimizes Noise and Vibration:
Correct tensioner roller alignment contributes to reduced noise and vibration levels in the belt drive system. Misalignment can cause the belt to oscillate, vibrate, or produce noise as it rubs against the pulleys or other components. These vibrations and noise can be transmitted throughout the system, leading to discomfort, increased wear on components, and a decrease in overall system efficiency. Proper tensioner roller alignment ensures smooth belt operation, minimizing vibrations and noise, and providing a quieter and more comfortable working environment.
5. Improves System Efficiency:
Proper tensioner roller alignment improves the overall efficiency of the belt drive system. Misalignment can result in energy losses due to increased friction, belt slippage, or inefficient power transfer. When the tensioner roller is correctly aligned, it helps maintain optimal belt contact with the pulleys, reducing energy losses and ensuring efficient power transmission. Improved system efficiency leads to reduced energy consumption, increased productivity, and cost savings over the long term.
6. Ensures Reliable Performance:
Tensioner roller alignment is critical for ensuring reliable performance of the belt drive system. Misalignment can lead to unexpected system failures, breakdowns, or unplanned downtime. Proper tensioner roller alignment helps maintain the overall stability and reliability of the system, reducing the risk of sudden failures or disruptions. By ensuring reliable performance, proper tensioner roller alignment contributes to increased productivity, improved operational efficiency, and enhanced system longevity.
7. Facilitates Maintenance and Service:
Proper tensioner roller alignment simplifies maintenance and service tasks. When the tensioner roller is correctly aligned, it is easier to access and adjust, allowing for straightforward tension adjustments or replacement when necessary. Maintenance personnel can quickly identify and address any alignment issues, ensuring that the system remains in optimal working condition. Proper tensioner roller alignment facilitates efficient maintenance practices, reduces downtime during servicing, and enhances the overall serviceability of the belt drive system.
In summary, proper tensioner roller alignment is crucial for the optimal performance, longevity, and reliability of a belt drive system. It ensures optimal belt tension, prevents misalignment, reduces wear on the belt, minimizes noise and vibration, improves system efficiency, and facilitates maintenance and service. By giving due attention to tensioner roller alignment, system operators can maximize the benefits of their belt drive systems and avoid potential issues that can arise from misalignment.
How do tensioner rollers contribute to reducing wear and increasing the lifespan of belts?
Tensioner rollers play a vital role in reducing wear and increasing the lifespan of belts in various applications. They offer several key contributions in achieving these objectives:
1. Maintaining Proper Belt Tension:
Tensioner rollers help maintain the optimal tension in belts throughout their operation. Proper tension is crucial for efficient power transmission and preventing belt slippage. When belts operate under inadequate tension, slippage can occur, leading to increased wear on the belt and associated components. Tensioner rollers ensure that the belts remain appropriately tensioned, reducing wear and extending their lifespan.
2. Absorbing Belt Vibrations:
Vibrations can occur in belt drive systems due to imbalances, misalignments, or variations in load. These vibrations can accelerate belt wear by causing friction and excessive flexing. Tensioner rollers are designed to absorb and dampen vibrations, minimizing their impact on the belt. By reducing vibrations, tensioner rollers help to decrease wear and prolong the life of the belt.
3. Distributing Tension Evenly:
Tensioner rollers distribute tension more evenly along the length of the belt. They help prevent localized areas of excessive tension, which can lead to premature wear and belt failure. By ensuring a more uniform distribution of tension, tensioner rollers contribute to reducing wear and extending the lifespan of belts.
4. Compensating for Belt Stretch:
Over time, belts can stretch due to the mechanical stresses they experience during operation. Belt stretch can result in reduced tension and compromised power transmission. Tensioner rollers are designed to compensate for belt stretch by applying additional tension to maintain the desired level of belt tension. This compensation helps to prevent belt slippage, wear, and premature failure, thereby increasing the lifespan of the belt.
5. Reducing Belt Misalignment:
Proper belt alignment is essential for minimizing wear and optimizing belt life. Tensioner rollers assist in maintaining belt alignment by exerting consistent pressure on the belt and guiding it along the desired path. By reducing belt misalignment, tensioner rollers help prevent edge wear, side-loading, and premature belt failure.
6. Providing Belt Support:
Tensioner rollers provide support to the belt, especially in longer spans or applications with heavy loads. They help prevent belt sagging and excessive flexing, which can lead to accelerated wear and reduced belt life. By offering support, tensioner rollers contribute to minimizing wear and increasing the durability of the belt.
7. Facilitating Belt Tracking:
Proper belt tracking is crucial for belt longevity and performance. Tensioner rollers aid in maintaining belt tracking by applying controlled pressure and guiding the belt along the intended path. By promoting accurate belt tracking, tensioner rollers help prevent edge wear, rubbing, and premature belt failure.
8. Minimizing Belt Slippage:
Belt slippage can occur when there is insufficient tension or excessive loads in the system. Tensioner rollers help maintain the necessary tension in the belt, ensuring a secure grip between the belt and the pulleys. By minimizing belt slippage, tensioner rollers reduce wear, heat generation, and premature belt failure.
In summary, tensioner rollers contribute significantly to reducing wear and increasing the lifespan of belts by maintaining proper tension, absorbing vibrations, distributing tension evenly, compensating for belt stretch, reducing belt misalignment, providing belt support, facilitating belt tracking, and minimizing belt slippage. These contributions help optimize the performance, efficiency, and longevity of belt drive systems in various applications.
Are there specific applications where tensioner rollers are essential for proper belt operation?
Yes, there are specific applications where tensioner rollers are essential for proper belt operation. Tensioner rollers play a critical role in maintaining optimal belt performance and are particularly important in the following applications:
1. High-Torque Systems:
In applications where high torque is involved, such as heavy machinery or industrial equipment, tensioner rollers are essential for proper belt operation. High torque can exert significant forces on belts, leading to increased tension and potential belt slippage. Tensioner rollers help maintain the correct tension, ensuring secure power transmission and preventing belt failures or damage in these demanding applications.
2. Variable-Speed Drives:
In applications where variable speed is required, such as in automotive engines or industrial machinery, tensioner rollers are crucial for proper belt operation. Variable-speed drives often rely on belt drive systems to adjust the speed of driven components. Tensioner rollers help maintain consistent belt tension, allowing for smooth speed adjustments and reliable operation across different speed ranges.
3. Long Belt Lengths:
In applications that involve long belt lengths, such as conveyor systems or large-scale manufacturing equipment, tensioner rollers are essential. Long belts are prone to stretching and sagging, which can cause misalignment and decreased power transmission efficiency. Tensioner rollers help counteract belt stretch, maintaining the proper tension and alignment over extended distances, ensuring optimal belt operation in these applications.
4. High-Speed Applications:
For high-speed applications, such as in racing vehicles, aircraft engines, or industrial machinery with rapid rotational speeds, tensioner rollers are vital for proper belt operation. High speeds can generate significant centrifugal forces that impact belt tension and introduce vibrations. Tensioner rollers help maintain the necessary tension, absorb vibrations, and prevent belt slippage, ensuring reliable and efficient power transmission at high speeds.
5. Challenging Environments:
In applications exposed to challenging environments, such as off-road vehicles, construction machinery, or marine equipment, tensioner rollers are essential for proper belt operation. Harsh conditions, including dust, dirt, moisture, and temperature variations, can accelerate belt wear and affect performance. Tensioner rollers help maintain optimal belt tension, reducing the risk of belt damage and ensuring reliable operation in these demanding environments.
6. Multi-Belt Systems:
Applications that utilize multi-belt systems, such as heavy-duty trucks, agricultural machinery, or printing presses, require tensioner rollers for proper belt operation. Multi-belt systems often have several belts driving different components or accessories. Tensioner rollers help maintain individual belt tension and overall system balance, preventing belt slippage, ensuring consistent power transmission, and optimizing the performance of the entire system.
7. High-Precision Applications:
In applications that demand high precision, such as CNC machines, robotics, or medical equipment, tensioner rollers are essential for proper belt operation. These applications require accurate and reliable power transmission to ensure precise movements or operations. Tensioner rollers help maintain the correct belt tension, minimizing variations and ensuring consistent performance in high-precision operations.
In summary, tensioner rollers are essential for proper belt operation in various specific applications, including high-torque systems, variable-speed drives, long belt lengths, high-speed applications, challenging environments, multi-belt systems, and high-precision applications. Incorporating tensioner rollers in these applications is crucial for maintaining optimal belt performance, preventing belt failures, and ensuring reliable and efficient operation of the belt drive systems.
editor by CX 2023-12-07
China best Heavy Duty Machine Excavator Undercarriage Spare Part Bottom Rollers Zx650/ Zx750/Zx870 Track Roller Berco with high quality
Product Description
Professional Excavator&Bulldozer Aftermarket Undercarriage Parts Manufacturer
Factory Supplying Directly
Super Quality with Competitive Price!!!
Product Features:
Product Name: | Excavator Undercarriage Parts Track Roller/Bottom Roller for EX100 EX200 EX300 EX400 EX600 EX750 ZAX360 ZAX470 ZAX670 ZAX690 ZAX870 ZAX890 ZAX1200 Excavator Excavator |
Technical: | Forging/Casting |
Surface Hardness: | HRC52-58, Deepth:8mm-12mm |
Colors: | Black or Yellow |
Finishing: | Smooth |
Applicable Industries: | Machinery Repair Shops, Construction works |
Material: | 35MnB |
Related Products: | Track Link, Track Pad, Track Roller, Idler. Sprockets, Carrier Roller, Tensioner for Excavators And Dozers |
For more than thousands types of rollers in stock!
Shipment immediately once order confirmed.
Confirming Dimensions With Us Before Ordering
Make Sure the Parts Matching with Your Machine
Strict Quality Control System
Original Factory, Quality Guarantted.
Choose us. You can buy better parts with good price!
XIHU (WEST LAKE) DIS.N Excavator&Bulldozer Undercarriage Parts&Components Including:
- Track Chain With Track Shoe Assembly
- Segments for Heavy Duty Excavator and Bulldozer
- Drive Sprockets
- Track Roller
- Carriaer Roller
- Idler
- Tensioner Spring
- Bolts&Nuts for All Part
Related Models:
THE MODELS FOR EXCAVATOR/BULLDOZER | ||||||||
FOR HITACHI | ||||||||
EX40-1 | EX40-2 | EX55 | EX60 | EX60-2 | EX60-3 | EX60-5 | EX70 | EX75 |
EX100 | EX110 | EX120 | EX120-1 | EX120-2 | EX120-3 | EX120-5 | EX130-1 | EX200-1 |
EX200-2 | EX200-3 | EX200-5 | EX220-3 | EX220-5 | EX270 | EX300 | EX300-1 | EX300-2 |
EX300-3 | EX300-5 | EX300A | EX330 | EX370 | EX400-1 | EX400-2 | EX400-3 | EX400-5 |
EX450 | ZAX30 | ZAX55 | ZAX200 | ZAX200-2 | ZAX330 | ZAX450-1 | ZAX450-3 | ZAX450-5 |
ZX110 | ZX120 | ZX200 | ZX200-1 | ZX200-3 | ZX200-5G | ZX200LC-3 | ZX210 | ZX210-3 |
ZX210-5 | ZX225 | ZX240 | ZX250 | ZX270 | ZX300 | ZX330 | ZX330C | ZX350 |
ZX450 | ZX450LC | ZX500 | ZX500LC | ZX520 | ZX670 | ZX690 | ZX870 | ZX130 |
ZX170 | ZX170LC | ZX195 | ZX260 | ZX360 | ZX360LC | ZX400 | ZX470 | ZX490 |
FOR KOMATSU(EXCAVATOR) | ||||||||
PC20-7 | PC30 | PC30-3 | PC30-5 | PC30-6 | PC40-7 | PC45 | PC45-2 | PC55 |
PC120-6 | PC130 | PC130-7 | PC200 | PC200-1 | PC200-3 | PC200-5 | PC200-6 | PC200-7 |
PC200-8 | PC210-6 | PC220-1 | PC220-3 | PC220-6 | PC220-7 | PC220-8 | PC270-7 | PC202B |
PC220LC-6 | PC220LC-8 | PC240 | PC300 | PC300-3 | PC300-5 | PC300-6 | PC300-7 | PC300-7K |
PC300LC-7 | PC350-6/7 | PC400 | PC400-3 | PC400-5 | PC400-6 | PC400LC-7 | PC450-6 | PC450-7 |
PC600 | PC650 | PC750 | PC800 | PC1100 | PC1250 | PC2000 | PC360 | PC460 |
FOR KOMATSU(BULLDOZER) | ||||||||
D20 | D31 | D50 | D60 | D61 | D61PX | D65A | D65P | D64P-12 |
D80 | D85 | D155 | D275 | D355 | D85PX | D85EX | D65EX | D65PX |
D65E | D68 | D68ESS | D75 | D75S | D85ESS | D155 | D155A | D155AX |
D275 | D275AX | D355 | D475 | |||||
FOR CATERPILLAR(EXCAVATOR) | ||||||||
E200B | E200-5 | E320D | E215 | E320DL | E324D | E324DL | E329DL | E300L |
E320S | E320 | E320DL | E240 | E120-1 | E311 | E312B | E320BL | E345 |
E324 | E140 | E300B | E330C | E120 | E70 | E322C | E322B | E325 |
E325L | E330 | E450 | CAT225 | CAT312B | CAT315 | CAT320 | CAT320C | CAT320BL |
CAT330 | CAT322 | CAT245 | CAT325 | CAT320L | CAT973 | CAT939C | CAT963C | CAT313 |
CAT323 | CAT318 | CAT326 | CAT328 | CAT329 | CAT336 | CAT340 | CAT345 | CAT349 |
FOR CATERPILLAR(BULLDOZER) | ||||||||
D3 | D3B | D3C | D3D | D4 | D4C | D4D | D4E | D4H |
D5 | D5B | D5C | D5D | D5H | D5M | D6 | D6C | D6D |
D6H | D6M | D6R | D6G | D6N | D7 | D7C | D7D | D7E |
D7F | D7G | D7H | D7R | D8 | D8R | D8N | D8H | D8T |
D8L | D8K | D8G | D8M | D9 | D9L | D9N | D9R | D9T |
D10 | D10R | D10N | D10T | D11 | D11R | D11N | ||
FOR KOBELCO | ||||||||
SK120-6 | SK120-5 | SK210-8 | SK210LC-8 | SK220 | SK220-1 | SK220-3 | SK220-5/6 | SK200 |
SK200 | SK200 | SK200-3 | SK200-6 | SK200-8 | SK200-5/6 | SK60 | SK290 | SK100 |
SK230 | SK250 | SK250-8 | SK260LC-8 | SK300 | SK300-2 | SK300-4 | SK310 | SK320 |
SK330-8 | SK330 | SK350LC-8 | SK235SR | SK450 | SK480 | SK30-6 | ||
FOR SUMITOMO | ||||||||
SH120 | SH120-3 | SH200 | SH210-5 | SH200 | SH220-3 | SH220-5/7 | SH290-3 | SH350-5/7 |
SH220 | SH280 | SH290-7 | SH260 | SH300 | SH300-3 | SH300-5 | SH350 | SH60 |
FOR VOLVO | ||||||||
EC160C | EC160D | EC180B | EC180C | EC180D | EC210 | EC210 | EC210B | EC240B |
EC290 | EC290B | EC240 | EC55 | EC360 | EC360B | EC380D | EC460 | EC460B |
EC460C | EC700 | EC140 | EC140B | EC160B | EC350 | EC350DL | EC480 | EC340 |
FOR LIEBHERR | ||||||||
R914 | R924 | R934 | R944 | R916 | R926 | R936 | R954 | R966 |
R974 | R984 | |||||||
FOR KUBOTA | ||||||||
JH60-7 | JH115 | JH135 | JH161 | JH185 | ||||
FOR DAEWOO | ||||||||
DH200 | DH220-3 | DH220 | DH220S | DH280-2 | DH280-3 | DH55 | DH258 | DH130 |
DH370 | DH80 | DH500 | DH450 | DH225 | DH150 | DH330 | DH400 | DH580 |
FOR HYUNDAI | ||||||||
R60-5 | R60-7 | R80-7 | R200 | R200-3 | R210 | R210-1 | R210-9 | R210LC |
R210LC-7 | R225 | R225-3 | R225-7 | R250 | R250-7 | R290 | R290LC | R290LC-7 |
R320 | R360 | R954 | R205 | R210-5 | R215 | R230 | R235 | R275 |
R300 | R385 | R485 | ||||||
FOR KATO | ||||||||
HD512 | HD1430 | HD512III | HD820III | HD820R | HD1430III | HD700VI | HD1250VII | HD250SE |
HD400SE | HD500SE | HD1880 | ||||||
FOR DOOSAN | ||||||||
DX225 | DX225LC | DX258 | DX300 | DX300LCA | DX420 | DX430 | DX140 | DX150 |
DX220 | DX250 | DX255 | DX260 | DX370 | DX480 | DX520 | ||
FOR SHXIHU (WEST LAKE) DIS.I | ||||||||
SD13-2 | DH16J2XL | DH16J2LGP | SD16 | SD22 | SD32 | |||
FOR CASE | ||||||||
CX210 | CX210B | CX210C | CX210D | CX210LC | CX225 | CX235 | CX235C | CX240 |
CX240C | CX245 | CX250 | CX250C | CX300 | CX300C | CX330 | CX330C | CX350 |
CX350C | CX460 | CX460LC | CX470 | CX470C | CX490 | CX490D | CX700 | CX700B |
CX750 | CX750D | |||||||
FOR JCB | ||||||||
JS200 | JS200SC | JS210 | JS210SC | JS220 | JS220LC | JS230 | JS230LC | JS240 |
JS240LC | JS290 | JS290LC | JS300 | JS300LC | JS330 | JS330LC | ||
FOR XCMG | ||||||||
XE55DA | XE60DA | XE65DA | XE75DA | XE80C | XE80D | XE85C | XE85D | XE135D |
XE155DK | XE150D | XE155D | XE200DA | XE200D | XE200C | XE205DA | XE215DA | XE215C |
XE215D | XE215HB | XE225DK | XE230C | XE245DK | XE240D | XE260C | XE265C | XE270DK |
XE305D | XE335DK | XE335C | XE370D | XE370DK | XE370CA | XE370C | XE380DK | XE470D |
XE490DK | XE490CK | XE500HB | XE520DK | XE550DK | XE750D | XE750G | XE950D | XE950G |
XE950DA | XE55 | XE60 | XE65 | XE75 | XE80 | XE85 | XE135 | XE150 |
XE155 | XE200 | XE205 | XE215 | XE225 | XD230 | XE240 | XE245 | XE260 |
XE265 | XE270 | XE305 | XE335 | XE370 | XE380 | XE470 | XE490 | XE500 |
XE520 | XE550 | XE750 | XE950 | |||||
FOR MITSUBISHI | ||||||||
MS30 | MS110 | MS110-3 | MS110-5 | MS110-8 | MS180 | |||
FOR SAMSUNG | ||||||||
SE210 | SE280 | SE320 | ||||||
FOR IHI | ||||||||
IHI35 | IHI50 | IHI55 | IHI60 | IHI75 | ||||
FOR YMMA | ||||||||
YM15 | YM30 | YM35 | YM55 | YM65 | YM85 | |||
FOR LIUGONG | ||||||||
LG906C | LG907 | LG200 | LG220 | LG925 | LG934 |
Packing&Shipping
FAQ
1. You are a trader or a manufacture?
We are an industry and trade integration business.
2. How can I be sure the part will fit my excavator/bulldozer?
Give us correct model number/machine serial number/ any numbers on the parts itself. Or measure the parts give us dimension or drawing.
3. How about the payment terms?
We usually accept T/T(Wire Transfer). other terms also could be negotiated.
4. What is your minimum order?
It depends on what you are buying. Normally, 1 pcs also can be suppllied.
5. What is your delivery time?
FOB HangZhou or any Chinese port : 20 days . If there are any parts in stock , our delivery time is only 1-5 days.
6. What about Quality Control?
We have a perfect QC system for the perfect products. A team who will detect the product quality and specification piece carefully, monitoring every production process until packing is complete, to ensure product safety into container.
Contact Us:
Melon Lin —————- Sales Manager ZheJiang XIHU (WEST LAKE) DIS.N MACHINERY CO., LTD. |
Types of V-Belt Drives
When evaluating drive technologies, you might want to consider a V-Belt. Not only can it improve the performance of an older drive, but it can save you time and money in the long run. Industry standard V-belts are prone to failing because of excessive wear, heat cracks, and stretching. Inefficient and downtime resulting from frequent retensioning and replacement can cost your company both time and money.
Cross-
A cross-belt for a V-Belt is a belt that is used in a conveyor system. This belt consists of 2 parts: an elastomer core and a fabric cover. The elastomer core is typically made of high-shock-resistant polyurethane. Different manufacturers have different synthetic rubber stocks, which may be used to prevent premature failure and extend the operating temperature range of the belt. Ideally, a well-engineered V-belt is stiff in the width and flexible along the length of the belt. The fabric covers are generally made of 2 different types of rubber, including compression and cushion rubber.
The diameter of the driver and driven pulleys are important considerations for choosing the right cross-belt for a V-belt. This will determine the belt length. The length should be proportional to the diameter of the drive shaft. Smaller diameters are better for smaller belts, which can increase elongation, which decreases the life of the belt. Larger diameters, on the other hand, can increase slippage, fluctuating force, and power loss.
Choosing the right V-belt for your vehicle is important, especially if you’re replacing a worn-out one. In some cases, the old V-belt may become too loose or a loop with a rubber-coated edge. You should measure the length of the belt before you buy it. Using a flexible english measuring tape, you can determine which size is best for your vehicle.
A cross-belt can increase power transmission by minimizing slipping. It also provides shock-absorption and increases the load capacity of the V-belt. It is the best option for heavy-duty machines where torque and power are critical. In some applications, this belt may be more effective than an open belt. If you use it for short distances, a cross-belt can be a better choice.
When choosing a V-belt, make sure to check the power ratio. The power of a belt depends on the initial tension applied to it. Also, the friction between the 2 mating surfaces is a factor. A V-belt with a high power density is not suitable for close-center applications. You can choose a narrow V-belt if you need a narrow belt for your machine.
U-shaped
The V-belt is a versatile belt used in countless industrial applications. Advancements in engineering have led to many different types of V-belts. Whether it’s a U-shaped belt or a double-sided V-belt, proper installation and maintenance are crucial for trouble-free operation. Below are some common V-belt specifications. Read on to learn more! The U-shaped V-belt is 1 of the most common.
A V-belt is a flexible, pliable machine element used to transmit power between 2 or more rotating shafts. Its cross-section is trapezoidal, so that as the tension increases on 1 side, the belt wedges into the groove on the opposite side. The increased friction between the 2 components results in a high torque transmission and minimal power loss from slippage. U-shaped V-belts are ideal for a variety of applications, from lawn mowers to cars.
The U-shaped V-belt is made of 2 parts: an elastomer core and a textile cover. The core is made from a flexible material with high flexural strength and shock resistance. The cover is made of textile material that is treated to create a chemical bond with the belt’s core material. This makes it pliable and strong while preventing the cover from becoming worn out or damaged.
Unlike flat belts, U-shaped V-belts are designed to fit into a U-shaped sheave, which increases their lateral rigidity. They also maintain their stability under shock and vibration loads. Their simplicity makes installation and tensioning much easier. The constructional components of a standard V-belt are illustrated in Figure 9. Each component has a vital role in the belt’s performance. Similarly, different materials can influence the belt’s performance.
As with any belt, proper tension is crucial. Having a loose belt causes slippage and rapid wear, which robs you of energy and productivity. Likewise, too much tension can cause premature belt wear. Proper tension is defined as the lowest level at which the belt does not slip or squeal under peak load. This tension range can still operate a drive, so it’s important to find the correct tension for your particular application.
Cogged
There are many advantages of a Cogged V-Belt. Its extra-thick construction allows for bends around smaller pulleys. It also runs cooler and lasts longer than a traditional V-belt. In addition, it has a higher coefficient of friction than a wrapped V-belt. Cogged V-Belts can also resist heat, making them an excellent choice for high-temperature applications.
A cogged V-Belt is also less likely to suffer from heat buildup, which can shorten the life of a standard belt and increase downtime and replacement costs. A Cogged V-Belt is more expensive than a wrap-molded belt, but it will pay for itself in as little as 1 month. Most synchronous belt conversions pay for themselves in less than 2 years. A longer payback time is typical with a larger system.
Cogged V-Belts are used in many applications, including in-line conveyors, gantry cranes, and wind turbines. The belt itself is composed of various types of rubber and reinforcements. They undergo tensile and compressive stresses as each segment of the belt passes through the pulley. Therefore, a different type of material is needed for the bottom side of the belt. The ideal material for this area should have a high coefficient of friction and increased wear resistance.
The Cogged V-Belt has a trapezium-shaped cross-section. The fabric cover resists heat and abrasion and helps protect the internal components of the v-belt. The different types of materials used in the fabric cover are patented. In some cases, the fabric cover is made of Kevlar or aramid fiber. This allows for smaller pulley diameters and more flexibility.
A Cogged V-Belt is made of 2 pieces of material. One is thick and includes a pitch line while the other has a slack side. The top is thicker and wider, while the bottom side has a lower pitch line. The slack side has a less pitch and more tension. Using a Cogged V-Belt will increase your productivity and help you save money.
Wedge
The Wedge V-Belt is 1 of the most popular types of drive belts available. The patented, narrow-profile design allows for lighter, thinner belts with greater transmission capabilities. The HY-T V-Belt is constructed with Vytacord tension members for strength and dimensional stability, and includes a cushion made of engineered rubber compound. This belt is ideal for high-speed, high-resistance applications, such as compressors, stone mills, and centrifugal pumps.
HY-T CZPT(r) belts have a continuous V-section, and a wide angle of flexibility. They provide torsional rigidity in long-center drives and are resistant to oil. The CZPT(r) belt is available in lengths up to 140 inches. Its free ribs wedge into the sheave groove to reduce belt whipping. This belt is also designed to fit into new designs and applications, so it’s compatible with virtually any type of drive.
The Wedge V-Belt is a popular choice in industrial applications. Its narrow profile reduces drive weight and space, allowing for higher horsepower. In addition, it can carry a higher load than a standard V belt. Its low cost and high efficiency make it a popular choice for many industrial applications. In addition to industrial settings, it is a popular choice in automotive and construction applications. While it may seem like a complicated belt design, the Wedge V-Belt is ideal for industrial use.
Wedge V-Belts have the same contact angle as the traditional v-belt, but have a narrow upper width. Their narrower upper width decreases their weight, which equalizes the tension on the tensile cord. The wedge-shaped design improves grip and increases wedge effect. Its durability is excellent, and it also features a cog shape for greater gripping power.
Wedge V-Belts are an efficient way to transmit power between 2 drives. They can move significant loads and can achieve very high speeds. The wedged shape of the belt allows it to wedge into the groove when the load increases. Moreover, it minimizes power loss due to slippage. If you want to get the most out of a Wedge V-Belt, make sure it is made of a material that resists heat and moisture.